ZUR KENNTNIS DES CHINOIDEN ZUSTANDES. X¹

DIE EINWIRKUNG LITHIUM-ORGANISCHER VERBINDUNGEN AUF STERISCH GEHINDERTE CHINONE UND CHINOLDERIVATE

Anton Rieker und Gerhard Henes

Chemisches Institut der Universität Tübingen 2

(Received in Germany 20 May 1968; received in UK for publication 29 May 1968)

Metallorganyle reagieren mit p-chinoiden Verbindungen unter 1.2- oder 1.4-Addition ³. Wir interessierten uns nun für die Frage, ob die sterische Abschirmung der Carbonylgruppe in ¹/₂ oder ²/₂ die 1.2-Addition von RLi verhindert.

Schema 1

$$1RMgX$$
 $1RMgX$
 $1RMgX$
 $1RLi$
 $1RLi$
 $2.5 c_0H_5Li$
 $1RLi$
 $1RLi$
 $2a: Z=H$
 $R=C_6H_5$
 $2b: Z=H$
 $R=C_6H_5$
 $R=C_$

Behandelt man das Chinon $\frac{1}{2}$ in ätherischer Lösung bei 25° 10 - 12 Stdn. mit $\underline{1.0 - 1.2}$ Äquiv. C_6H_5Li , dann werden nach der Hydrolyse mit wässriger Ammonchloridlösung ($p_H < 7$) neben unverändertem $\frac{1}{2}$ 44% $\frac{2}{2}$ (Z = H; $R = C_6H_5$) isoliert. In besseren Ausbeuten (bis zu 80%) erhält man die Chinole $\frac{2}{2}$ (Z = H; $R = C_6H_5$, C_6D_5 , $2-CH_3C_6H_4$, $3-CH_3C_6H_4$, $4-CH_3C_6H_4$,

3776 No.34

Bu- C_6H_4 , 2- $CH_3OC_6H_4$, 3- $CH_3OC_6H_4$, 4- $CH_3OC_6H_4$, 4- $C_6H_5C_6H_4$, 2.4.6- $(CH_3)_3C_6H_2$, 4-Br- C_6H_4 , α -Naphthyl, α -Naphthyl, Cycloheptyl) bei Verwendung der entsprechenden Grignard-Verbindungen ⁴. Unter diesen Bedingungen wird praktisch nur die ungehinderte Carbonylgruppe angegriffen. Durch Reduktion mit Zinkstaub in Methanol/Salzsäure lassen sich die Chinole α in guten Ausbeuten zu den Phenolen α reduzieren α .

Läßt man andererseits $\underline{2.1}$ - $\underline{2.5}$ Äquiv. einer Lithium-organischen Verbindung auf $\underline{1}$ einwirken oder behandelt $\underline{2a}$ bzw. $\underline{2b}$ mit $\underline{2.1}$ - $\underline{2.5}$ Äquiv. derselben (bevorzugt in Di-n-butyläther, 4 Stdn. bei 120°), dann isoliert man nach saurer Hydrolyse die Phenole $\underline{3a}$ bzw. $\underline{3b}$. So wurde das schwer zugängliche 2.4-Diphenyl-6-tert.-butylphenol $\underline{6}$ ($\underline{3a}/\underline{3b}$: R = R' = C $_{6}H_{5}$) mittels $\underline{C_{6}H_{5}}$ Li aus $\underline{1}$ zu 40% und aus $\underline{2a}$ (R = C $_{6}H_{5}$) zu 60% in reiner Form gewonnen. Statt $\underline{2b}$ können auch dessen Derivate $\underline{2c}$ und $\underline{2d}$ verwendet werden.

Bei der Synthese der Phenole 3a aus 1 dürfte - analog zur Umsetzung im molaren Verhältnis - erst 1.2-Addition der Lithium-organischen Verbindung an die ungehinderte Carbonylgruppe zu 2 (R' = R) eintreten. Für die Umwandlung von 2 in 3a bzw. 3b erschien uns folgender Mechanismus (Schema 2) besonders wahrscheinlich:

Schema 2

Durch 1.2-Addition an die sterisch gehinderte Carbonylgruppe entsteht 6 bzw. nach der Hydrolyse 7. Protonenkatalysierte Ablösung der sterisch weniger gehinderten Hydroxygruppe unter gleichzeitiger 1.2-Anionotropie des Restes R' führt zum Cyclohexadienon 8. Nach früheren Beobachtungen kann 8 in Gegenwart von Protonen nicht stabil sein und muß zu 3 und Isobutylen fragmentieren.

Mit dem Ziel, Zwischenprodukte der Art 7 oder 8 nachzuweisen, wurde die Hydrolyse auch alkalisch durchgeführt. Dabei erhielt man kristalline Substanzen mit analytischen und spektrosköpischen Daten, die für die Struktur 7 beweisend sind (Tab. 1). Die Ketobande im IR-Spektrum ist verschwunden, dafür treten zwei OH-Banden auf. Im NMR-Spektrum (CCl₄ oder

CS₂) erscheint je 1 Peak für die tert.-Butylprotonen und für die olefinischen Protonen (7a-7d). Offenbar ist nur eine der möglichen räumlichen Anordnungen von R, R' und OH bezüglich des laut Modell wannenförmigen Ringes verwirklicht (aus 2e und CH₃Li erhält man dagegen ein Gemisch stereoisomerer Diole). Die Ausbeuten an den Diolen 7 sind vom Lösungsmittel und von der Temperatur abhängig. Im allgemeinen ist Di-n-butyläther bei 60 - 70 dem Diäthyläther bei 36 vorzuziehen.

Tab. 1 Dihydrobenzolderivate 7

Nr.	R	R'	Ausbeute % ^a	Schmp. ^O C	NMR (7, CCl ₄) b			
					C(CH ₃) ₃	R	R'	=СН
<u>7</u> a	C(CH ₃) ₃	СН3	90	115	8.68	9.06	8.39	4.13
<u>7</u> b	C(CH ₃) ₃	$^{\mathrm{C}}{_{6}^{\mathrm{H}}}_{5}$	46	180-181	9.04	8.98	2.34- 2.83	3.95
7 <u>c</u>	С ₆ ^Н 5	С ₆ Н ₅	56	166	9.02 °	2.17- 2.85		4.10
<u>7</u> d	С ₆ Н ₅	СН3	92	159	8.67 ca	a. 2.7	8.26	4, 35

a In Di-n-butyläther, 4 Stdn., 60° ; b Die OH-Banden liegen zwischen \mathcal{T} = 8.22 und 8.80; c In CS_2

In der Schmelze oder bei Zusatz starker Säuren wandeln sich die Diole glatt und spontan in die Phenole $\frac{3}{2}$ um. Mit Spuren Trifluoressigsäure erhält man erst gelbe Zwischenprodukte. Die aus $\frac{7}{2}$ gebildete Substanz wurde genauer untersucht; sie entspricht laut NMR-Spektrum (AB-System der chinoiden Protonen, 2^2 3.22/4.11; 1_{AB} = 2.6 Hz) und UV-Spektrum (1_{AB} = 313 mm/Methanol) dem Cyclohexadienon 1_{AB} [R = C(CH $_3$) $_3$, R' = CH $_3$]. Bei Zusatz weiterer Trifluoressigsäure wandelt sich 1_{AB} rasch in 1_{AB} [R = C(CH $_3$) $_3$, R' = CH $_3$] um. Damit dürfte der in Schema 2 vorgeschlagene Mechanismus und hiermit die Möglichkeit einer 1_{AB} bewiesen sein.

Aus Chinolen 2 mit räumlich kleinen Resten R am p-Chinolzentrum lassen sich erwartungs-

3778 No.34

gemäß auch Verbindungen erhalten, die formal durch 1.4-Addition entstanden sein könnten. So wird $2\underline{e}$ (Z = H, R = CH₃) durch C_6H_5Li bei 60^0 (Di-n-butyläther, 4 Stdn.) zu 15% in das Keton $\underline{5}$ (Schema 1) vom Schmp. 169^0 übergeführt. Ein AB-Signal im NMR-Spektrum bei $\mathbf{r}=6.89/7.23$ mit J = 8.3 Hz für die gesättigten Protonen beweist u.a. diese Struktur, (die genannten Protonen befinden sich wahrscheinlich in trans-Stellung). Über die Konformationen von $\underline{5}$ und $\underline{7a}$ - $\underline{7d}$ sowie über weitere Reaktionsprodukte chinoider Systeme mit Li- und Mg-Organo-Verbindungen werden wir an anderer Stelle berichten.

Literaturverzeichnis

- 1 IX. Mitt.: A. Rieker und H. Kessler, Tetrahedron 24 (1968), im Druck.
- 2 Der Deutschen Forschungsgemeinschaft und Herrn Professor Dr. Eugen Müller sind wir sehr zu Dank verpflichtet.
- 3 Zusammenfassende Darstellung: A.J. Waring, Öst. Chemiker-Ztg. 68, 232 (1967).
- 4 A. Rieker, Angew. Chem. 76, 601 (1964).
- 5 A.Rieker und K.Scheffler, Liebigs Ann. Chem. 689, 78 (1965).
- 6 W. Michel, <u>Dissertation Universität Marburg</u>, 1961; Herrn Professor Dr. K. Dimroth sind wir für die Überlassung einer authentischen Probe sehr zu Dank verpflichtet.
- 7 A. Rieker, Chem. Ber. 98, 715 (1965).
- 8 Inzwischen wurde 1.2-Addition auch bei einem sterisch gehinderten Chinonmethid beobachtet: H.D.Becker, J.org. Chemistry 32, 4093 (1967).